| Write your name here | | | |-----------------------------------|----------------|--------------------------| | Surname | Other | names | | Edexcel GCSE | Centre Number | Candidate Number | | Chemistry Unit C1: Chemistry | | ce | | | ı | Foundation Tier | | Wednesday 9 November Time: 1 hour | 2011 – Morning | Paper Reference 5CH1F/01 | | | | | #### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 60. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. # **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. Turn over > edexcel advancing learning, changing lives P40176A ©2011 Edexcel Limited. 1/1/1/1/ | | 0 He helium | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | |-----------------------------|--------------------|--|------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|---| | | _ | 19 F fluorine | 35.5 CI chlorine 17 | 80
Br
bromine
35 | 127
 | [210]
At
astatine
85 | orted but not | | | 9 | 16
O
oxygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ve been rep | | | S | 14 N nitrogen 7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209 Bi bismuth 83 | s 112-116 ha
authenticated | | (O | 4 | 12
C carbon
6 | 28
Si
silion
14 | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207 Pb lead 82 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | ent | т | 11 B boron 5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
T
thallium
81 | ents with ato | | Elen | | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elem | | the | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium
111 | | e of | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | [271] Ds damstadtium 110 | | iodic Table of the Elements | | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192 Ir iridium 77 | [268] Mt meitnerium 109 | | odic | T T | | | 56
Fe
iron
26 | Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | The Per | | mass
ool
umber | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | [266] Sg seaborgium 106 | | | Kev | relative atomic mass
atomic symbol name atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | | relativ
atc
atomic | | 48
Ti
titanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | [261] Rf rutherfordium 104 | | | | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La*
lanthanum
57 | [227] Ac* actinium 89 | | | 8 | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40 Ca calcium 20 | 88
Sr
strontium
38 | 137 Ba barium 56 | [226]
Ra
radium
88 | | | - | 7
Li
lithium
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223]
Fr
francium
87 | | | | | | | | | | * The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. P 4 0 1 7 6 A 0 2 2 0 # **Answer ALL questions.** Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . | ar | swer, pu | it a line through the box $oxtimes$ and then mark your new answer with a cross $oxtimes$ | | |----|----------|--|-----| | | | Problems caused by acids | | | 1 | | drochloric acid is produced in the stomach. en too much acid is produced it can cause indigestion. | | | | (i) | Give a reason why hydrochloric acid is present in the stomach. | (1) | | | (ii) | Complete the sentence by putting a cross (☒) in the box next to your answer. | | | | | The formula of hydrochloric acid is | (1) | | | \times | A HCl | | | | \times | B H ₂ Cl | | | | \times | C HCl ₂ | | | | \times | D HCl ² | | | | | | | | (1) | |--|--|--|-----------------------------|------------|-----| | | | | | | | | \square A | \square | В | C C | ■ D | | | (b) Indigestion car
Indigestion tab | n cause pain in the colets can be taken to | chest. relieve this pain | | | | | | | Relief Tablets magnesium carbonate 500 Fost oc effective from oc indigest heentis | mg
ing,
erelief
id | | | | | | | 7 | | | | (i) Explain h | ow indigestion table | ets relieve this pa | in. | | (2) | 4 | | 0 1 7 6 A | | | | (iii) Which of these hazard symbols should be used on a container of dilute hydrochloric acid to show that it is an irritant? Put a cross (☒) in the box next to your answer. | (ii) | Complete the sentence by putting a cross (☒) in the box next to your answer. | | |------|---|-------| | | Some indigestion tablets contain magnesium carbonate.
When magnesium carbonate is added to dilute hydrochloric acid, a salt is formed. | | | | The name of the salt formed is | | | × | A magnesium oxide | (1) | | | B magnesium nitrate | | | × | C magnesium chloride | | | | D magnesium sulphate | | | | | | | | ste gases from coal-fired power stations can be acidic.
se waste gases can be passed through calcium carbonate. | | | | lain how the calcium carbonate helps to reduce the amount of acid rain. | | | Znp | and now the earerent earerentee helps to reduce the uniount of ucid runn. | (2) | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | arks) | | | (Total for Question 1 = 8 ma | nrks) | | | (Total for Question 1 = 8 ma | nrks) | # **Crude oil products** **2** Crude oil is separated into fractions. Crude oils from different oil wells contain different percentages of the fractions. The table shows the percentages of the fractions in crude oils from three different oil wells. | | percentage of fraction in crude oil from | | | | | |------------|--|------------|------------|--|--| | fraction | oil well A | oil well B | oil well C | | | | gases | 1 | 6 | 9 | | | | petrol | 2 | 15 | 24 | | | | kerosene | 6 | 14 | 20 | | | | diesel oil | 7 | 10 | 16 | | | | fuel oil | 26 | 28 | 30 | | | | bitumen | 58 | 27 | 1 | | | (a) Give the name of the process that is used to separate crude oil into fractions. (2) (b) Crude oil from which oil well contains the most petrol? (1) (c) Which fraction is present in almost the same percentage in the crude oils from all three oil wells? (1) | Kerosene is used as a fuel for | (1) | |--|-----------------------------| | | (1) | | ■ B large ships | | | C jet aircraft | | | D power stations | | | e) Petrol fractions contain the hydrocarbon octar | ne, C_8H_{18} . | | Explain what is meant by the term hydrocart | 2 (2) | | | | | | | | | | | One product obtained when hydrocarbons bur | n in air is carbon dioxide. | | | | | Describe a test to show that a gas is carbon di | | | Describe a test to show that a gas is carbon di | oxide. (2) | | Describe a test to show that a gas is carbon di | | | Describe a test to show that a gas is carbon di | | | Describe a test to show that a gas is carbon di | | | Describe a test to show that a gas is carbon di | | | Describe a test to show that a gas is carbon di | (2) | | Describe a test to show that a gas is carbon di | (2) | | Describe a test to show that a gas is carbon di | (2) | | Describe a test to show that a gas is carbon di | (2) | | | ene is an unsaturated hydrocarbon. te what is meant by the term unsaturated . | | |-------------|---|----| | Sta | to what is meant by the term ansaturation . | (1 | | (b) Cor | nplete the sentences by putting a cross (☒) in the box next to your answer. | | | (i) | When bromine water is shaken with ethene, it changes colour. | | | | The bromine water becomes | (1 | | \boxtimes | A orange | (1 | | \times | B brown | | | \boxtimes | C colourless | | | \boxtimes | D clear | | | (ii) | The formula of ethene is | (1 | | \boxtimes | \mathbf{A} CH_4 | (1 | | \times | \mathbf{B} C ₂ H ₄ | | | \boxtimes | \mathbf{C} $\mathbf{C}_2\mathbf{H}_6$ | | | \boxtimes | $\mathbf{D} \ \mathrm{C}_3\mathrm{H}_8$ | P 4 0 1 7 6 A 0 8 2 0 | (c) A gas containing ethene can be produced from liquid paraffin using this | is apparatus. | |---|---------------| | ceramic wool soaked in liquid paraffin porous pot | _ gas | | ° | | | | | | heat heat | water | | | | | | | | Describe how liquid paraffin becomes ethene in this experiment. | (3) | | | (3) | (d) Ethene is used to make poly(ethene). | | | | | | Describe how ethene molecules form poly(ethene) molecules. | (2) | | | (-) | Explain the problems caused by waste poly(ethen | e). (2) | |---|-----------------------------------| | | (Total for Question 3 = 10 marks) | | | | | | | | | | | | | | | | ## The atmosphere 4 (a) The bar chart shows the percentage of gases in the Earth's atmosphere. (i) Give the name of gas A. (1) (ii) Which of the gases listed below is naturally present in the atmosphere?Put a cross (⋈) in the box next to your answer. (1) - **A** argon - **B** carbon - C chlorine - D hydrogen (b) (i) Complete the sentence by putting a cross (⋈) in the box next to your answer.The gases in the Earth's earliest atmosphere were thought to originate from (1) - A plants - **B** the ocean - C volcanoes - **D** ice caps | (ii) Explain how the growth of primitive plants changed the percentage of oxygen and carbon dioxide in the Earth's early atmosphere. | (2) | |---|-------| | | | | *(c) Experiments can be carried out to find the volume of oxygen in a given volume of air. When hot, copper reacts with oxygen. | | | In one experiment the following apparatus is used. At the start of the experiment, 100 cm ³ of air is in gas syringe A. The air is passed backwards and forwards over the heated copper. | | | gas syringe A heat gas syri | nge B | | Describe how the apparatus can be used to show that the 100 cm ³ of air contained 21 cm ³ of oxygen. | (6) | | | | | | | | | | | | | | | | | (Total for Question 4 = 11 mar | ·ks) | ## **Calcium carbonate** 5 The picture shows a piece of limestone rock containing fossils. (a) (i) Complete the sentence by putting a cross (⋈) in the box next to your answer.Limestone is a form of calcium carbonate.The elements present in calcium carbonate are (1) - A calcium and oxygen only - **B** calcium and carbon only - C calcium and carbonate only - D calcium, carbon and oxygen only - (ii) Limestone is a sedimentary rock. Explain how fossils are formed in limestone. (3) | Exp | plain how marble is formed from limestone. | | |----------|---|-------------| | | | (2) | | | | | | | | | | | | | | e) (i) | Complete the sentence by putting a cross () in the box next to your answ | | | | When calcium carbonate is heated it reacts to form calcium oxide and carb | on dioxide. | | | This reaction is an example of | (1) | | × | A electrolysis | | | \times | B incomplete combustion | | | \times | C cracking | | | \times | D thermal decomposition | | | (ii) | Write the word equation for this reaction. | | | | | (1) | | l) Des | cribe what you would see when water is added drop by drop to a sample of | cold | | | rium oxide. | (2) | | | | . , | | | | | | | | | | | | | | | (Total for Question 5 = 10 |) marks) | | | (Total for Question 5 – To | J IIIai Ks) | #### Metals 6 The pie chart shows the main uses of copper. (a) Use the pie chart to give the biggest use for copper. (1) (b) Copper can be extracted from a naturally occurring substance called malachite. State the name given to naturally occurring substances from which metals are extracted. (1) (c) Overhead power cables supported on pylons are used to carry electricity. The table shows information about three metallic substances. | metallic
substance | density
/ kg m ⁻³ | cost per
tonne / £ | relative
strength | relative ability
to conduct
electricity | relative
resistance to
corrosion | |-----------------------|---------------------------------|-----------------------|----------------------|---|--| | copper | 8920 | 5279 | high | very good | good | | aluminium | 2700 | 1425 | high | good | good | | steel | 7820 | 505 | very high | good | poor | | (i) | The pyl | ons are | made | of | steel | L | |-----|---------|---------|------|----|-------|---| |-----|---------|---------|------|----|-------|---| Use information from the table to explain which properties of steel make it the most suitable of these three metals for the pylons. (2) | • • • • • • • |
 |
• • • • • • | • • • • • • |
 |
 | • • • • • | • • • • • | • • • • • | • • • • • |
• • • • • • | • • • • • | • • • • • |
• • • • • • |
 |
 |
• • • • • |
• • • • • |
• • • • • • | • • • • • • |
 |
• • • • • • |
 |
 |
 | | |---------------|------|-----------------|-------------|------|------|-----------|-----------|-----------|-----------|-----------------|-----------|-----------|-----------------|------|------|---------------|---------------|-----------------|-------------|------|-----------------|------|------|------|--|
 |
 | |
 |
 | | | | |
 | | |
 |
 |
 |
 |
 |
 | |
 |
 |
 |
 |
 | | | | (2) | |--|----------| | | | | | | | | | | | | | | | | ron for making steel, copper and aluminium is obtained from substances found he Earth's crust. | in | | The metals are made into many useful things. When no longer required the metal articles are thrown away as waste or recycle | ed. | | Explain why it is important to recycle these metals rather than put them in gene tousehold waste. | ral | | lousenoid waste. | (6) | 2 marks) |